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a b s t r a c t

We consider a PDE system comprising compressible hydrodynamics, flux-limited diffusion
radiation transport and chemical ionization kinetics in a cosmologically-expanding uni-
verse. Under an operator-split framework, the cosmological hydrodynamics equations
are solved through the piecewise parabolic method, as implemented in the Enzo commu-
nity hydrodynamics code. The remainder of the model, including radiation transport,
chemical ionization kinetics, and gas energy feedback, form a stiff coupled PDE system,
which we solve using a fully-implicit inexact Newton approach, and which forms the crux
of this paper. The inner linear Newton systems are solved using a Schur complement for-
mulation, and employ a multigrid-preconditioned conjugate gradient solver for the inner
Schur systems. We describe this approach and provide results on a suite of test problems,
demonstrating its accuracy, robustness, and scalability to very large problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

A fundamental physics component in cosmology and astrophysics applications is the transport of ionizing radiation along
with the interaction of that radiation with the hydrodynamic motion and ionization state of the surrounding gas. One exam-
ple currently receiving a great deal of attention is cosmic reionization [1], our motivation in this work. Observations indicate
that an early population of UV emitting galaxies photoionized the intergalactic hydrogen and helium gas when the universe
was about 800 million years old (redshift �8). A computational challenge is to calculate this process self-consistently, cou-
pling the radiative transfer of ionizing photons, the ionization kinetics and photo-heating of the gas, and the attendant
hydrodynamic motions. This problem is challenging because the physics is numerically stiff and cosmic reionization is
intrinsically three-dimensional, involving the growth, percolation, and overlap of ionization zones around an irregular
and evolving distribution of galaxies with time-dependent luminosities. In addition, the problem inherits the large range
. All rights reserved.
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of spatial scales (�105) intrinsic in galaxy formation simulations, necessitating the use of spatially-adaptive mesh or particle-
tree methods and large-scale parallel computing [2,3].

A variety of 3D radiative transfer methods are under development to tackle this problem [4]. These necessarily simplify
the description of the radiation field in order to render the problem tractable. These methods include ray tracing using long
and short characteristics [5–8], Monte Carlo [9,10], and moment methods [11–13]. However, only some of these codes allow
solution of the coupled problem on spatially-adaptive grids, and very few allow distributed-memory parallelism. More
importantly, all of these codes handle the interactions between hydrodynamic, radiative, and chemical processes in an ex-
plicit, operator-split fashion, which ignores stiff couplings that often arise between these components. When this happens,
such codes must dramatically reduce allowable timesteps, or resort to subcycling, to ensure stability and accuracy of the
coupled simulations.

Radiation transport and chemical ionization time scales are much faster than typical hydrodynamic time scales. This is
particularly evident in dense gas bound to galaxies where recombination and light-crossing times are short compared to
the age of the universe (Hubble time). Moreover, these processes are very tightly-coupled since radiation induces ionization
that in turn affects opacities. While time-explicit, adaptive subcycling schemes have been developed that are capable of
returning accurate solutions in all regimes of interest [7], it is our view that for both computational efficiency and solution
accuracy, tightly-coupled implicit methods require investigation. Here we present such a method.

We solve ionizing radiation transport, chemical ionization kinetics, and gas photo-heating using a fully-implicit inexact
Newton method. This algorithm is coupled to a cosmological hydrodynamics code through an explicit, operator-split formal-
ism. The inner linear Newton systems are solved using a Schur complement formulation, which neatly decouples the local
microphysics from the transport calculation. Radiation transport is modeled in the flux-limited diffusion approximation for
simplicity, although our approach can be easily generalized to higher-order moment schemes. The use of Schur complements
allows the application of optimal and scalable multigrid methods for the solution of the scalar radiation diffusion equation.
We describe our algorithm in detail. We then illustrate our method’s accuracy, robustness, and parallel scalability against a
suite of verification tests of increasing size and complexity. In its current implementation, we are restricted to calculations
on uniform Cartesian grids. An extension of our algorithm on block structured adaptive meshes is under development, and
requires only modifications to the inner multigrid linear solver.

The paper is organized as follows. In Section 2 the governing equations for cosmological radiation hydrodynamics are pre-
sented under two different assumptions about the radiation-matter coupling: a two temperature model assuming local ther-
modynamic equilibrium (LTE), and a non-LTE ionization kinetics multispecies model. In Section 3 we describe our solution
procedures for splitting off the hydrodynamic calculation, and our coupled implicit radiation–ionization-gas energy system.
Results from solution verification tests are presented in Section 4, as well as parallel scalability tests. Conclusions follow in
Section 5.

2. Cosmological radiation-hydrodynamics–ionization model

We consider the coupled system of partial differential equations
@tqb þ
1
a

vb � rqb ¼ �
1
a
qbr � vb; ð1Þ

@tvb þ
1
a

vb � rvb ¼ �
_a
a

vb �
1

aqb
rp� 1

a
r/; ð2Þ

@teþ
1
a

vb � re ¼ �2 _a
a

e� 1
aqb
r � ðpvbÞ �

1
a

vb � r/þ G�K; ð3Þ

@tni þ
1
a
r � nivb ¼ ai;jnenj � niC

ph
i ; i ¼ 1; . . . ;Ns; ð4Þ

@tEþ
1
a
r � Evb ¼ r � DrE�m

_a
a

Eþ 4pg� cjE: ð5Þ
Here, the first three Eqs. (1)–(3) correspond to the equations of ideal-gas dynamics in a coordinate system that is comoving
with the expanding universe [14]. These equations correspond to mass, momentum and energy conservation, respectively, in
which vb � aðtÞ _x is the proper peculiar baryonic velocity, p is the proper pressure, and the total gas energy per unit mass is
given by e. The modified gravitational potential is given by /, which satisfies the comoving form of Poisson’s equation,
r2/ ¼ 4pg
a
ðqb þ qdm � hqiÞ; ð6Þ
where g provides the gravitational constant, qb and qdm are the baryonic and dark matter densities, respectively, and hqi is
the cosmic mean density. The densities qi are comoving, relating to the proper densities through the relation qi �
qi;properaðtÞ

3. Here aðtÞ � ð1þ zÞ�1 denotes the cosmological expansion parameter for a smooth homogeneous background,
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where the redshift z is a function of time only. All spatial derivatives are taken with respect to the comoving position
x � r=aðtÞ. The hydrodynamics equations are closed as usual with the ideal-gas equation of state,
e ¼ p
qbðc� 1Þ þ

1
2

vbj j2; ð7Þ
where c is the ratio of specific heats, taken to be 5/3 throughout this work.
The hydrodynamics equations are coupled with the elemental species rate Eq. (4) and an equation describing the flux-

limited diffusion (FLD) approximation of radiation transport in a cosmological medium (5) [12,15]. In these equations i de-
notes the ith chemical species (out of Ns total), ni is the comoving number density, ne is the electron number density, nj cor-
responds to other ions that react with the species i, and ai;j are the rate coefficients defining these interactions [16,17]; E
corresponds to the comoving radiation energy density. The parameter m controls whether E is monochromatic at a specified
frequency m ðm ¼ 0Þ, or an integrated grey radiation energy density (m = 1).

The baryonic gas is coupled to collisionless dark matter solely through their self-consistent gravitational field via (6). The
dark matter density is evolved using the Particle-Mesh method described in [18–20]. As the N-body method is standard and
not the focus of this paper, we do not elaborate on it here.

2.1. Model coupling

In addition to the advective components of the chemistry and radiation equations, coupling between these equations
arise through a number of spatially-local reaction terms. The radiation energy density and chemical number densities affect
the gas energy through the heating and cooling rates G and K, respectively. The ionization and recombination rates ai;j and
emissivity g depend on the gas temperature,
T ¼ ðc� 1Þ plmp

qbkb
; ð8Þ
where mp corresponds to the mass of a proton, l corresponds to the local molecular weight, and kb is Boltzmann’s constant.
Finally, the photoionization rate Cph

i depends on the radiation energy density, and the opacity j depends on the state of
chemical ionization.

In determining these coupling terms we distinguish between two cases: those in local thermodynamic equilibrium (LTE)
and those that are not (nLTE). In the LTE case the chemical species are assumed to be in equilibrium, and hence their Eq. (4)
may be omitted from the time-dependent system (1)–(5). For problems in this regime, the coupling terms resemble those
typically encountered in radiation-hydrodynamics simulations [12,21,22],
gLTEðTÞ ¼ jPB ¼ jPrSB

p T4; GLTEðqb; EÞ ¼
cj
qb

E; KLTEðqb; TÞ ¼
4p
qb

gLTEðTÞ; ð9Þ
where c is the speed of light, rSB is the Stefan–Boltzmann constant, and jP and j correspond to the problem-dependent
Planck mean and total opacities for the gas.

For simulations that may not be approximated as being in local thermodynamic equilibrium, these coupling terms involve
the dynamically-changing chemical ionization states. Here, the combined opacity depends on the local ionization states ni,
the emissivity g depends on both T and ni, the gas heating rate G depends on both E and ni, and the gas cooling rate K de-
pends on T and ni, with the corresponding formulas given in the references [16,23–26].

2.2. Cosmological flux-limited radiation diffusion model details

We derive the cosmological flux-limited radiation diffusion equation (5) from the general multi-frequency version [15],
@tEm þ
1
a
r � ðEmvbÞ ¼ r � ðDrEmÞ þ m

_a
a
@mEm þ 4pgm � cjmEm: ð10Þ
Through assumption of a given radiation frequency spectrum, vEðmÞ, the frequency-dependent radiation energy density may
be written in the form Emðx; t; mÞ ¼ eEðx; tÞvEðmÞ. With this, we define the single ‘‘grey” radiation energy density used in the
model (1)–(5) as
Eðx; tÞ ¼
Z 1

m0

Emðx; t; mÞdm ¼ eEðx; tÞZ 1

m0

vEðmÞdm: ð11Þ
The radiation Eq. (5) may then be derived through integration of the Eq. (10) over frequencies ranging from the ionization
threshold of Hydrogen ðhm0 ¼ 13:6 eVÞ to infinity; integration of the term m _a

a @mEm gives rise to the term � _a
a in (5). We note

that this approximation (11) is valid only if the assumed spectrum vEðmÞ is defined such that the indefinite integral exists, as
is the case for quasar and stellar type spectra where it scales with frequency as Em / m�bq where bq > 1. However, through this
formulation we may also consider problems involving a monochromatic radiation energy density, since such energy densi-
ties may also be expanded as Emðx; t; mÞ ¼ eEðx; tÞvEðmÞ, where for radiation at the monochromatic frequency mk, the assumed
spectrum is given through the Dirac-delta function vEðmÞ ¼ dmk

ðmÞ. In such cases, the term m _a
a @mEm vanishes, giving rise to the
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parameter m in (5). For standard grey radiation approximations, we assume a radiation spectrum of the form of either a

power law, vEðmÞ ¼ m
m0

� �a
;a < �1, or as a TB blackbody spectrum, vEðmÞ ¼ 8ph m

c

� �3
.

exp hm
kbTB

� �
� 1

� �
.

As is standard with FLD approximations to radiation transfer, one must take special care in construction of the diffusion
coefficient function D. In its simplest form, D may be written as D ¼ c

3jT
, where jT ¼ jA þ jS is the total extinction coefficient,

jA corresponds to total absorption (here taken to be the opacity j) and jS corresponds to scattering [21]. Use of this form for
the diffusion coefficient, however, results in an infinite signal speed for the radiative flux �DrE. To preserve causality, the
analytic form of D is modified with a dimensionless flux-limiter whose particular form may be tuned to the specific problem
of interest, but whose overriding purpose is to guarantee that the radiation transfer Eq. (5) gives the correct numerical
behavior in the limiting cases of (nearly) isotropic and free-streaming radiation. Several choices for flux-limited forms of
D have been proposed in the literature [27,28]. We consider the diffusion coefficient to be of the form
DðEÞ ¼
D1ðEÞ 0 0

0 D2ðEÞ 0
0 0 D3ðEÞ

264
375; ð12Þ
where
DiðEÞ ¼
cð2jT þ RiÞ

6j2
T þ 3jT Ri þ R2

i

;

with Ri ¼ j@ iEj=E; i ¼ 1;2;3. We note that this function has been reformulated from its original version [12] to allow in-
creased numerical precision for scattering-free simulations involving extremely small opacities (i.e. jT ¼ jA ¼ j� 1), as
is typical in cosmology applications.

3. Solving the coupled system

3.1. Operator-split hydrodynamics with radiative feedback

Since typical astrophysical and cosmological simulations involve the hydrodynamic motion of gases encountering shocks,
whereas radiation diffusion and chemical kinetics processes are more of reaction–diffusion type, we choose to solve the cou-
pled system (1)–(5) in an operator-split fashion. In this approach, a time step tn to tnþ1 is taken using the general steps

(i) Deposit the dark matter particles onto the mesh to calculate the qn
dm.

(ii) Solve for the gravitational potential / resulting from the densities qb and qdm using equation (6).
(iii) Evolve the dark matter particles using the Particle-Mesh Method [18–20].
(iv) Evolve the hydrodynamics Eqs. (1)–(3) with a high-order, explicit-time upwind method. In this step, use the velocity

field vb to advect both the chemical number densities ni and radiation energy density E.
(v) Using a high-order implicit-time method, solve a coupled reaction–diffusion system to obtain the time-evolved num-

ber densities ni, radiation energy density E and gas energy e.

In order to allow us to split the Eqs. (1)–(5) into the two steps (iv) and (v) above, we consider the gas energy as consisting of
two components, e ¼ eh þ ec , where eh is the fluid energy arising from the hydrodynamic evolution of the system, and ec is
the gas energy correction arising from the couplings with radiation and chemistry. Under this decomposition, the energy con-
servation equation (3) may be equivalently written as
@tðeh þ ecÞ þ
1
a

vb � rðeh þ ecÞ ¼ �
2 _a
a
ðeh þ ecÞ �

1
aqb
r � ðpvbÞ �

1
a

vb � r/þ G�K: ð13Þ
Under this splitting, the hydrodynamic solver used in step (iv) of the operator-split algorithm solves the system of
equations
@tqb þ
1
a

vb � rqb ¼ �
1
a
qbr � vb; ð14Þ

@tvb þ
1
a

vb � rvb ¼ �
_a
a

vb �
1

aqb
rp� 1

a
r/; ð15Þ

@teh þ
1
a

vb � reh ¼ �
2 _a
a

eh �
1

aqb
r � ðpvbÞ �

1
a

vb � r/ ð16Þ

@tni þ
1
a
r � nivb ¼ 0; ð17Þ
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@tEþ
1
a
r � Evb ¼ 0; ð18Þ
to evolve the solution at tn; qn
b;v

n
b ; e

n;nn
i ; E

n� �
, to the time-updated variables at tnþ1, qnþ1

b ;vnþ1
b ; enþ1

h

� �
, and the advected vari-

ables n�i ; E
�� �

. For this step, we employ the Piecewise Parabolic Method (PPM) [29], on a regular finite-volume spatial grid,
implemented in the community astrophysics code Enzo [2,20,30].

The remainder of the coupled system,
@tec ¼ �
2 _a
a

ec þ G�K; ð19Þ

@tni ¼ ai;jnenj � niC
ph
i ; ð20Þ

@tE ¼ r � DrE�m
_a
a

Eþ 4pg� cjE; ð21Þ
is then solved using a fully-implicit nonlinear solution approach to evolve the advected variables 0;n �i ; E
�� �

to the time-

evolved quantities enþ1
c ;nnþ1

i ; Enþ1
� �

. Here we may assume that en
c ¼ 0 since the hydrodynamic solver uses the full energy

at tn in its evolution, i.e. en
h ¼ en. Once this step is finished, we compute the time-evolved total energy as the sum of the

hydrodynamic portion eh and the adjustments due to radiative feedback ec , i.e. enþ1 ¼ enþ1
h þ enþ1

c . The treatment of the im-
plicit radiation, chemical ionization, and gas energy feedback system (19)–(21) serves as our focus for the remainder of this
section.

3.2. Solving the radiation, ionization and energy feedback system

Under a method-of-lines approach, we consider a two level, up-to-second-order accurate theta-scheme for implicit inte-
gration of our system (19)–(21),
enþ1
c þ DthLnþ1

e ¼ en
c þ Dtðh� 1ÞLn

e ; ð22Þ

nnþ1
i þ DthLnþ1

ni
¼ n

n
i þ Dtðh� 1ÞLn

ni
; ð23Þ

Enþ1 þ Dth Dnþ1
E þ Lnþ1

E

� �
¼ En þ Dtðh� 1Þ Dn

E þ L
n
E

� �
: ð24Þ
Here, the parameter h defines the implicit integration method: h ¼ 1 corresponds to a first-order implicit Euler method,
h ¼ 0:5 gives a second-order time-centered approach (i.e. Crank–Nicolson). We note that in the ensuing computational re-
sults from Section 4, we have typically taken h ¼ 0:51 to provide a nearly-second-order time integration while avoiding the
‘‘ringing” traditionally associated with fully time-centered approaches [31,32]. For the above equations, we have defined the
diffusive operator
DE ¼ DEðE;niÞ � �r � DrE; ð25Þ
and we have defined the local ‘‘reaction” operators as
Le ¼ Leec; E;ni �
2 _a
a

ec � GþK ð26Þ

Lni
¼ Lni

ni; ec; E � niC
ph
i � ai;jnenj ð27Þ

LE ¼ LEE; ec;ni � m
_a
a

E� 4pgþ ckE: ð28Þ
The Eqs. (22)–(24) form a coupled nonlinear system of reaction–diffusion equations for evolution of the fluid energy cor-
rection ec , the elemental number densities ni, and the radiation energy density E. Denoting the vector of unknowns
U ¼ ðec; ni; EÞT , we first define the nonlinear residual function for the time step tn ! tnþ1, as
f ðUÞ � U þ Dt h

LeðUÞ
Lni
ðUÞ

DEðUÞ þ LEðUÞ

0B@
1CA� gn

ec

gn
ni

gn
E

0B@
1CA; ð29Þ
where the vectors gn
� are formed using the previous time-level information from (22)–(24). In order to evolve the coupled

implicit system, we solve the nonlinear problem f ðUÞ ¼ 0 for the updated vector of unknowns Unþ1. For this nonlinear solve,
we use a globalized Inexact Newton’s Method [33,34], in which we apply an iterative process for convergence toward the solu-
tion Unþ1 in the following manner.
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Given an initial guess U0 � Uðtnþ1Þ, we iterate toward a solution Unþ1 satisfying kf ðUnþ1Þk < e� 1 (we typically choose
e ¼ 10�7):

1. Approximately solve the linearized Newton system, kJðUkÞSk þ f ðUkÞk < dk, to tolerance dk for the correction vector Sk.
Here, JðUkÞ � @

@U f ðUkÞ, and we typically choose the tolerance as dk ¼ 10�6kf ðUkÞk.
2. Update the vector of unknowns as Ukþ1 ¼ Uk þ kkSk, where kk 2 ðkmin;1	 is the line-search parameter [35,36].

We measure convergence of the Newton iteration with the RMS norm
kvk ¼ kvk2
2

NðNs þ 2Þ

 !1=2

; ð30Þ
where NðNs þ 2Þ is the number of unknowns in v (N spatial cells, Ns þ 2 variables), since such a norm does not grow artifi-
cially larger with mesh refinement. The key to efficiency of the inexact Newton algorithm lies in a fast and robust solver for
the linear systems JS ¼ �f . Once such a solver has been provided, the algorithm exhibits very fast convergence – superlinear
for this choice of dk [33,37]. Moreover, for diffusive PDE systems similar to the one solved here, the Newton convergence rate
has been shown to be independent of spatial resolution [38], suggesting that this entire implicit algorithm should allow sca-
lability to the limits of the inner linear solver.

3.2.1. Linear solver
In solving the system (29), we make one approximation within the Newton system matrices JðUÞ, wherein we lag the ni

dependence of DE in (25) to the previous Newton iterate. Mathematically, this results in a full Newton step for all but the
limiter’s dependence on the chemical opacities, which are instead converged through a fixed-point iteration. The resulting
solution retains the accuracy and stability of the full Newton iteration, albeit with theoretically slower convergence. How-
ever, in practice we have not noticed any increase in nonlinear iterations due to this approximation, and most importantly it
results in inexact Newton matrices with the form
JðUÞ ¼ I þ Dt h

Je;e Je;n Je;E

Jn;e Jn;n Jn;E

JE;e JE;n JE;E

264
375; ð31Þ
where nearly all of the blocks are given by the spatially-local components,
Je;e � ½@eLe	 Je;n � ½ @n1Le @n2Le . . . 	 Je;E � ½@ELe	;

Jn;e �

@eLn1

@eLn2

..

.

2664
3775 Jn;n �

@n1Ln1 @n2Ln1 . . .

@n1Ln2 @n2Ln2 . . .

..

. ..
. . .

.

2664
3775 Jn;E �

@ELn1

@ELn2

..

.

2664
3775;

JE;e � ½@eLE	 JE;n � ½ @n1LE @n2LE . . . 	;

ð32Þ
and the only block containing spatial couplings is JE;E � ½@EðDE þ LEÞ	. Thus, although the Jacobian matrix contains couplings
both within and between variables, it has a very desirable structure: all inter-variable couplings occur locally in space, and
the only nonlocal couplings are within the block JE;E, consisting of a scalar-valued reaction–diffusion operator.

In keeping with a block-structured view of the Jacobian (31), we rewrite the Newton system JS ¼ �f in the form
M U

L D

� 	
sM

sE


 �
¼ �

fM

fE


 �
; ð33Þ
where
M ¼ I þ Dth
Je;e Je;n

Jn;e Jn;n

" #
; U ¼ Dth

Je;E

Jn;E

" #
;

L ¼ Dth½ JE;e JE;n 	; D ¼ I þ Dth½ JE;E 	;
ð34Þ
sM ¼ ½se; sn	T and fM ¼ ½fe; fn	T . We note that the only matrix containing spatial dependencies is D, so under an appropriate var-
iable ordering the other sub-matrices are block diagonal. Hence, we may efficiently invert M to obtain sM as a function of sE:
MsM þ UsE ¼ �fM ) sM ¼ �M�1ðfM þ UsEÞ:
Inserting this into the second row, we have the single equation for sE,
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ðD� LM�1UÞsE ¼ �fE þ LM�1fM :
Therefore, this Schur complement formulation [39] for solution of the linear Newton system (33) proceeds with the fol-
lowing steps:

(i) Set ~f M ¼ M�1fM .
(ii) Solve the system ðD� LM�1UÞsE ¼ �fE þ L~f M for sE.

(iii) Recover the remaining solution pieces, sM ¼ �~f M �M�1UsE.

We examine each of these steps below.
The step (i) corresponds to solving the linear system
I þ DthJe;e DthJe;n

DthJn;e I þ DthJn;n

" #
~f e

~f n

 !
¼

fe

fn


 �
: ð35Þ
Due to the spatial locality of each component in M, we order the equations and unknowns in this system so that application
of M, and more notably M�1, may be performed independently in every spatial cell. Such solves consist of dense matrix alge-
bra on ð1þ NsÞ 
 ð1þ NsÞ linear systems (for Ns chemical densities). In addition, at this step we compute the matrix M�1U
through one additional solve with M, which will be used in the following steps.

The step (ii) corresponds to solving the system ðD� LM�1UÞsE ¼ L~f M � fE. This is denoted the Schur complement system,
with the matrix S ¼ D� LM�1U. We note that due to the spatially-local nature of the matrices L and M�1U, we may form S by
constructing the diffusive sub-matrix D, followed by updates to the diagonal entries corresponding to the entries of LM�1U.
Similarly, construction of the right-hand side L~f M � fE may occur independently at each spatial location. Once this system has
been computed, we use a multigrid-preconditioned conjugate gradient parallel linear solver from the HYPRE library [40,41]
to perform the scalar-valued solve, sE ¼ S�1ðL~f M � fEÞ. We note that this is the only step in the solution of the Jacobian sys-
tems (33) that requires communication between processors. Moreover, we point out that in recent tests the HYPRE library
has demonstrated ideal weak scaling up to over 100,000 processors for diffusion problems similar to the one encountered in
this work [42]. As this solver comprises the majority of the non-local components within our nonlinear solver, we therefore
expect similar scalability for the overall implicit solution approach described here.

The final step (iii) in solution of the system (33) is to recover the solution components sM ¼ ðse; snÞT via the system
sM ¼ �~f M �M�1UsE. Again, since we have already computed the spatially-local matrix M�1U and the vector ~f M ¼ M�1fM in
step (i), we may trivially obtain the remaining solution components through cell-local matrix–vector products and vector
operations, sM ¼ �~f M � ðM�1UÞsE.

3.2.2. Multiphysics/cosmology units
As with any multi-physics system, special care must be taken when solving such systems computationally due to dispa-

rate scales between variables and equations. This problem is especially evident in cosmology applications, where in CGS
units one may typically enounter specific gas energies on the order of 1012, number densities on the order of 10�27, and radi-
ation energy densities on the order of 10�15, with all proper density values decreasing in time due to cosmological expansion.
To this end, we define the scaled variables
~ec ¼ ec=ue; eE ¼ E=uE; ~ni ¼ ni=un; ~x ¼ x=ux; ~t ¼ t=ut; ð36Þ
where the constants ue;uE;un; ux and ut correspond to the typical magnitudes of gas energy, radiation energy density, chem-
ical number density, length and time at the start of the simulation. We note that due to our use of comoving values for E;ni

and x, these constants are all redshift-independent, with the proper values of these quantities given by
Eproper ¼ E=a3ðtÞ ¼ eE uE

a3ðtÞ ; ni;proper ¼ ni=a3ðtÞ ¼ ~ni
un

a3ðtÞ ; xproper ¼ xaðtÞ ¼ ~xuxaðtÞ: ð37Þ
The constants are supplied on a problem-dependent basis, to allow for adaptable, on-the-fly rescaling of simulations ranging
from normalized test problems to cosmological reionization. With these rescaled variables, we rewrite our Eqs. (22)–(24) as
the normalized system
~enþ1
c þ D~theLnþ1

e ¼ ~en
c þ D~tðh� 1ÞeLn

e ; ð38Þ

~nnþ1
i þ D~theLnþ1

n
¼ enn

i þ D~tðh� 1ÞeLn
n; ð39Þ

eEnþ1 þ D~th eDnþ1
E þ eLnþ1

E

h i
¼ eEn þ D~tðh� 1Þ eDn

E þ eLn
E

h i
: ð40Þ
Here, the operators eLe; eLn; eLE and eDE have correspondingly absorbed the renormalization constants u�. These equations,
along with the normalized solution vector eU ¼ ð~ec; ~ni; eEÞT are then used within the solution strategy described in Section 3.2.
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3.2.3. Adaptive time step selection
A strong appeal of using implicit methods is their stability with respect to time step size; however such freedom gives rise

to the question of what time step should be used. At one extreme, we may choose a large step to achieve overall efficiency of
the simulation, with little to no knowledge of the resulting temporal accuracy. At the other extreme, we may choose a very
small time step for an accurate solution, resulting in inefficient simulations due to the increased cost of solving the nonlinear
systems at each step. As the approach described here is operator-split, in which the hydrodynamics is solved using an ex-
plicit approach, we are therefore bound by the hydrodynamic CFL stability limit; however for most problems involving radi-
ation and chemical ionization, the dynamic time scales of interest remain significantly faster than the hydrodynamic time
scale. Thus the question of how to adaptively choose the time step size remains.

To that end, we adaptively choose the time steps as the largest possible that additionally satisfy a prescribed accuracy
requirement. We estimate this accuracy through comparison of the updated solution Unþ1 with an explicit predictor for that
solution Upred. Defining the weighting vector in a spatial cell i for the variable v as
xi;v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jUnþ1

i;v Upred
i;v j

q
þ 1; ð41Þ
(which assumes normalized values of Uv ), we estimate the local accuracy of the current time step as
eloc ¼
1

NðNs þ 2Þ
Unþ1 � Upred

x




p

p

0@ 1A1=p

; ð42Þ
where we have used the standard p-norm (including p ¼ 1 as the ‘max’ norm, in which case we do not divide by NðNs þ 2Þ),
and where the quotient inside the norm is taken pointwise. With this estimate, we set the new time step to
Dtnþ1 ¼ stolDtn

eloc
; ð43Þ
which should provide the maximal value that still satisfies the desired integration accuracy tolerance, stol, assuming that
Upred approximates the time-evolved solution Unþ1 to OðDtÞ.

Here, the vector x is designed so that eloc estimates the average relative change in each solution component, and includes
the harmonic mean of the predicted and new states to allow increased robustness in the case of cosmology-type problems
where variables change by orders of magnitude across cells and time steps. The value of p is typically taken to be 1 in the
ensuing test problems; however such a choice may limit parallel scaling since such a measure is sensitive to pointwise
changes, of which there are many more as dynamics propagate throughout an increasingly refined domain. Lastly, we use
the explicit predictor as the initial guess for the Newton method, U0, which we describe in the following Section 3.2.4.

3.2.4. Explicit predictor
A well known property of Newton’s method is that its robustness and efficiency benefit greatly from an accurate initial

guess. To this end, we provide the predicted initial Newton iterate
U0 ¼
ec;0

ni;0

E0

0B@
1CA ¼ en

c

nn
i

En

0B@
1CAþ Dt

Ln
e

Ln
ni

Dn
E þ L

n
E

0B@
1CA; ð44Þ
i.e. we use an initial guess given by the OðDtÞ-accurate explicit Euler update to the coupled system (19)–(21). As this provides
only an initial guess to the solution, its instability at larger Dt will not affect the temporal stability of the overall method,
since the solution to each step must satisfy the implicit system (22)–(24). However, as we use an adaptive time-stepping
strategy, for very fast dynamics (that give rise to very small Dt), such an initial guess may already satisfy the nonlinear tol-
erance kf ðU0Þk < e and the solver will not require any Newton iterations, effectively allowing an adaptive explicit/implicit
simulation of the coupled system (19)–(21).

3.2.5. Adaptive computation with supplied radiation spectrum vEðmÞ
The final detail that we describe in this solution approach relates to the choice of assumed radiation spectrum vEðmÞ. As

noted in Section 2.2, we may choose either a monochromatic or an integrated ‘‘grey” radiation equation, based on the choice
of this assumed spectrum. This choice affects all terms involving the radiation energy density Em in the general radiation en-
ergy equation (10) and in the coupling terms G and Cph

i . As each of these terms involve a product of the form f ðmÞEm, integra-
tion over m converts these to
Z 1

m0

f ðmÞEmðx; t; mÞdm ¼ eEðx; tÞZ 1

m0

f ðmÞvEðmÞdm: ð45Þ
We therefore allow a user-defined functional form for vEðmÞ, which we then numerically integrate to high accuracy upon ini-
tialization of the simulation, providing the relevant constants necessary to convert the m-dependent Eq. (10) to the mono-
chromatic or grey integrated Eq. (5).
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4. Numerical results

We present test problems designed to verify the accuracy of the radiation diffusion and chemical ionization modules in
conjunction with hydrodynamical fluid motions. Since a number of distinct processes may compete for importance in a full
simulation, we begin with simple tests that isolate various single components, and subsequently build upon those results
with more sophisticated problems that couple additional physics. We begin with a radiation diffusion problem (Section
4.1) that exercises the diffusion term of the radiation Eq. (5) in the absence of energy, chemical, or hydrodynamic coupling;
this test is followed by an examination of the matter-radiation coupling terms (Section 4.2) in an infinite uniform medium, a
diffusion wave with material coupling (Section 4.3), and a non-equilibrium radiating shock problem (Section 4.4), all of
which assume chemical equilibrium. Our attention then turns to problems including ionization, beginning with an HII ion-
ization front propagating through a static, isothermal medium (Section 4.5), followed by a cosmological I-front propagation
problem that exercises the cosmology terms and units (Section 4.6). We then consider a fully-coupled radiation-hydrody-
namics–ionization calculation (Section 4.7). This section concludes with additional calculations (Section 4.8) demonstrating
the parallel scalability of the radiation diffusion module, which of all components places the highest communication de-
mands upon a domain-decomposed parallel calculation.

We note that for all test problems except (Sections 4.6 and 4.8), we use a non-cosmological problem (i.e. z ¼ 0 and a ¼ 1).
In problems (Sections 4.6 and 4.8), the cosmological parameters are described therein.

4.1. Free-streaming radiation

Because the standard diffusion equation is parabolic, the associated signal speed of the diffusion variable is formally infi-
nite. However, in reality radiation fronts propagate at speeds bounded by the speed of light in vacuum, so we modify the
diffusion coefficient in our radiation energy Eq. (5) with a flux-limiter, as discussed in Section 2.2. Our first test problem ver-
ifies the correct action of this limiter by examining the propagation of a planar radiation front through a transparent med-
ium. Radiation is assumed to propagate along the x-axis of our computational mesh; a Dirichlet boundary condition is
imposed on the left boundary specifying an incident radiation energy density of 1:0 erg cm�3. Physically, the expectation
is that with a sufficiently small (but nonzero, due to numerical constraints) opacity, a sharp radiation front will move
through the domain at the speed of light. The Planck and Rosseland mean opacities are assigned a constant value of
10�6 cm�1, ensuring an essentially transparent medium. The spatially uniform initial value of the radiation energy density
is 10�4 erg cm�3.

The computational mesh has a domain length of 1.0 cm along the propagation direction of the light wave. We have run
the problem for 8.3391 picoseconds, which is one quarter of the light-crossing time for this length. Fig. 1 shows a series of
curves resulting from calculations at mesh sizes of 128, 256, 512, 1024, and 2048 zones along the x-axis. The dashed line
indicates the expected location of the radiation front, c t, where c is the speed of light and t the evolution time. In the absence
of the flux-limiter, the numerical curves would give the formal t !1 solution for the diffusion equation, which for our prob-
lem parameters would be a nearly horizontal profile for E throughout the domain (given the nearly zero opacity). That the
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Fig. 1. Curves of E vs. x for mesh sizes of 128 (red), 256 (orange), 512 (blue), 1024 (green), and 2048 (violet) zones. The analytical solution (black dashed
line) is a step function centered at x = 0.25 m. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of
this article.)
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curves capture the correct location of the radiation front is due entirely to the action of the limiter. The sharpening of this
front with increased resolution is evident.

Also apparent is a slight lag (about 0.01 cm) between the analytical location of the radiation front and the numerical loca-
tion, taken as the common intersection point of the numerical curves. The size of this lag depends upon the choice of the
adaptive time step. In the language of (Section 3.2.3), we compute Dt using p ¼ 1 and we vary stol, which here corresponds
to the maximum allowed fractional change in the radiation energy density per timestep. Fig. 2 illustrates this effect by show-
ing 3 curve pairs, each of which has been computed with a different choice of stol: 0.01 (green), 0.05 (blue), and 0.25 (red). In
each colored pair, the solid curve was obtained using 512 zones, and the dashed curve shows the 128-zone result. Two
curves at different mesh resolutions are provided to identify the ‘‘consensus” value of the light front location via their point
of intersection. This location is seen to converge as stol ! 0.

4.2. Matter-radiation equilibration in a homogeneous medium

We now consider a problem in which e and E are spatially uniform but are initialized to values far away from equilibrium.
This case thus isolates the matter-radiation coupling terms in the gas and radiation energy equations. The parameters for this
test were published by Turner and Stone [43], who assumed an isotropic medium characterized by a single opacity of
4
 10�8 cm�1, a gas density of 10�7 g cm�3, and an average particle mass of 0:6 mH , where mH is the mass of a hydrogen
atom. Coupled to this medium is a radiation field with a uniform value of 1012 erg cm�3. From this value we compute a ‘‘radi-
ation temperature”, Tr � ðE=arÞ1=4, of about 3:4
 106 K. Here we have defined ar as the radiation constant,
7:56
 10�15 erg cm�3 K�1. Two cases are considered: one in which the initial gas energy density is e ¼ 1010 erg cm�3,
and one in which the initial value is e ¼ 102 erg cm�3. For the stated parameters, these energies correspond to gas temper-
atures of roughly 4:8
 108 and 4.8 K, respectively, which therefore bracket the radiation temperature. In both cases, how-
ever, the initial radiation temperature is sufficiently high that the radiation energy density should remain constant to good
approximation as the gas evolves to thermal equilibrium. To see this clearly, consider the effective heat capacity of a unit
volume of the radiation ‘‘gas” as compared to that for the material. For radiation, this number is simply 1:0 cm
 arT

3
r , which

evaluates to roughly 3
 105 erg K�1. In contrast, the gamma value and mean particle mass translate to a specific heat
ðerg g�1 K�1Þ of roughly 2:0
 108, which yields, for our assumed density, a material heat capacity of 20 erg K�1 for a unit
control volume. The physical result is that the radiation field has an effectively infinite thermal reservoir when compared
to the material.

If the radiation energy density is formally assumed to be constant, the gas energy equation may be written as a simple
ODE:
Fig. 2.
associa
readily
_e ¼ cjE� 4pjBðeÞ; ð46Þ
where B is the temperature-dependent Planck function
BðTÞ ¼ car

4p
T4: ð47Þ
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Radiation energy profiles at 128 (dashed curves) and 512 (solid curves) zones for stol of 0.01 (green), 0.05 (blue), and 0.25 (red). Intersections of
ted 128 and 512-zone curves indicate the ‘‘consensus” location of the radiation front for a given choice of stol . Convergence to the correct value is
observed. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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Using the ideal-gas law (7), we write B as a function of e and solve the simplified gas energy equation for the equilibrium
value of e such that _e � 0,
Fig. 3.
value is
eeq ¼
3
2

qkB

0:6mH


 �
E
ar


 �1=4

: ð48Þ
Notice that this expression is nothing more than the ideal-gas formula for e evaluated at the fixed radiation temperature, the
expected result.

The results of our two test calculations are shown in Fig. 3. Both tests were run in a small box domain (43 zones) with
triply-periodic boundaries. The case of Tð0Þ > Tr is indicated by the solid curve; the low-T case is shown by the dashed line.
The horizontal dotted line has been placed at e ¼ eeq. Both energy curves converge to the correct result. Note that in this test
the opacity serves only to control the timescale to reach thermal equilibrium; neither the value of the equilibrium energy nor
the validity of our assumption of constant E are dependent on the value of j. While Fig. 3 demonstrates convergence to the
correct asymptotic value of the gas energy, it provides no information as to whether the rate at which it approaches this va-
lue is correct. A quantitative assessment of this latter metric is provided by our next test problem.

We further use this test to examine the conservation properties of the coupled radiation and gas energy solver. In Table 1
we show the value of
R

jEtotalðtÞ � Etotalð0ÞjdxR
Etotalð0Þdx

ð49Þ
for both tests at the final time t = 2.5e�7 s, run using a variety of nonlinear and linear solver tolerances, e and d, respectively.
We note that in all cases, the total energy is conserved to more than 10 digits of accuracy. Moreover, while the conservation
is weakly dependent on the nonlinear solver tolerance, it is entirely independent of the linear solver tolerance. This behavior
is most likely due to use of the Schur complement formulation (Section 3.2.1), that exactly solves for coupling between vari-
ables to floating point roundoff, leaving the iterative linear solver to handle only the radiation equation. We further note that
this is an ideal problem to test conservation of the coupled solver, since it is the only test considered that uses a closed sys-
tem. We further comment that since the PPM finite-volume method is constructed to satisfy conservation, and the implicit
subsolver achieves conservation to high accuracy, overall conservation of the coupled solver follows. However, we note that
for problems utilizing non-periodic boundary conditions, chemical ionization cooling, gravitational heating, or cosmological
expansion, the model no longer represents a closed system and therefore will not conserve energy.

4.3. Non-equilibrium Marshak waves

This test exercises both radiation diffusion and the physics of matter-radiation coupling. Non-equilibrium Marshak waves
characterize the evolution of the radiation field in an initially cold, uniform halfspace on which a radiation source is imposed.
The particular form of the Marshak problem described here is originally due to Pomraning [44]. The problem was re-exam-
ined by Su and Olson [45], who derived semi-analytic exact solutions for the radiation and gas energy densities and tabu-
lated select values of them on a grid of space and time values. The problem considers a formally 1D semi-infinite domain
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Evolution to thermal equilibrium of a medium with an initially high (solid line) and low (dashed line) gas energy density. The analytical equilibrium
shown by the horizontal dotted line.



Table 1
Conservation of total energy for the matter-radiation equilibration test. Relative error in energy conservation (49) for both low-to-high and high-to-low
temperature equilibration, for various nonlinear and linear solver tolerances e and d, respectively.

e d L! H error H! L error

10�7 10�9 7:04
 10�12 1:37
 10�12

10�10 10�9 3:07
 10�13 3:45
 10�14

10�4 10�9 3:55
 10�11 1:83
 10�11

10�7 10�12 7:04
 10�12 1:37
 10�12

10�7 10�3 7:04
 10�12 1:37
 10�12
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in which ðz; tÞ denote dimensional space and time coordinates. Ignoring hydrodynamic motions, Su and Olson write simpli-
fied forms for the radiation and material-energy equations as
@tEðz; tÞ � @z
c

3j
@zEðz; tÞ

h i
¼ cj½arT

4ðz; tÞ � Eðz; tÞ	; ð50Þ

cvðTÞ@tTðz; tÞ ¼ cj½Eðz; tÞ � arT
4ðz; tÞ	; ð51Þ
in which j is the constant opacity, ar the radiation constant as defined previously, and cv the specific heat of the material.
Note that the flux-divergence term in (50) assumes pure diffusion with no flux-limiter. The matter temperature, T, is as-
sumed to be related to the gas energy, e, via
e ¼ qcvT: ð52Þ
As written, (50) and (51) are coupled nonlinear PDEs in the dependent variables E and T. Su and Olson linearized the equa-
tions by choosing the following form for the specific heat:
cv ¼ aT3; ð53Þ
where a is an arbitrary constant. The T3 dependence of cv on temperature has two effects: it allows equations (50) and (51)
to be written as linear ODEs in E and T4, and it gives the heat capacity of the material the same temperature dependence as
the effective heat capacity of the radiation field. With an appropriate choice of a, a problem can therefore be designed in
which the material and radiation will both evolve significantly in space and time.

The description of the problem is completed with a specification of the boundary conditions. A Marshak boundary con-
dition is applied to E at z ¼ 0:
Eð0; tÞ � 2
3j

@zEð0; tÞ ¼
4
c

F inc; ð54Þ
where F inc is the incident flux at z ¼ 0. The boundary condition at z ¼ 1, and initial conditions at t ¼ 0 are
Eð1; tÞ ¼ 0; Eðz; 0Þ ¼ Tðz; 0Þ ¼ 0: ð55Þ
Su and Olson construct the linearized equations by defining dimensionless independent and dependent variables, ðX; sÞ
and ðu;vÞ such that
X � zj
ffiffiffi
3
p

; uðX; sÞ � c
4F inc


 �
Eðz; tÞ; s � 4arcj

a


 �
t; vðX; sÞ � car

4F inc


 �
T4ðz; tÞ: ð56Þ
With these definitions, and letting � ¼ 4ar=a, Eqs. (50), (51), and (54), (55) become
�@suðX; sÞ � @2
X2 uðX; sÞ ¼ vðX; sÞ � uðX; sÞ; ð57Þ

@svðX; sÞ ¼ uðX; sÞ � vðX; sÞ; ð58Þ

uð0; sÞ � 2ffiffiffi
3
p @Xuð0; sÞ ¼ 1; ð59Þ

uð1; sÞ ¼ 0; ð60Þ

uðX;0Þ ¼ vðX;0Þ ¼ 0: ð61Þ
The Marshak boundary condition represented by (58) enforces the constraint of constant flux on the left boundary. This is
an example of a ‘‘mixed” or Robin boundary condition, and as such requires special treatment in Enzo. For the purposes of
this verification test, we implement this boundary condition by imposing a Dirichlet condition with a time-varying value of u
computed from [45]’s Eq. (36), evaluated at X ¼ 0. Because the integrands in their equation are highly oscillatory for s� 1,
we substitute the asymptotic expression given by their Eq. (51) when s < 10�5.
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Fig. 4 shows results from a high-resolution simulation with 2048 zones along the X coordinate. The exact solution values
tabulated by [45] span the range 0 6 X 6 10. Since the right boundary condition is specified at X ¼ 1, we choose our domain
X 2 ½0; L	 such that L is sufficiently large (about 35) for the evolution time of interest that the Dirichlet condition XðLÞ ¼ 0 may
be reasonably applied. We choose opacity and coupling parameters j ¼ � ¼ 1:0 cm�1. The curves indicate profiles of u
(dashed lines) and v (solid lines) for s values of 1, 3, 10, 30, 100. The squares and circles indicate exact values of u and v,
respectively. We have indicated these values on corresponding curves at evolution times sufficiently early that the material
and radiation have not yet had time to equilibrate. Fig. 5 shows a resolution study for the curves computed at s ¼ 1. Curves at
mesh sizes of 128 (red), 256 (orange), 512 (blue), 1024 (green), and 2048 (black) are shown. Each calculation is performed
with the timestep restriction stol ¼ 0:05. Because this treatment allows for adaptive timesteps, the evident first-order rate of
convergence measures the combined effect of time and space discretization methods.

4.4. Subcritical radiating shock waves

We now add hydrodynamic motions to our mix of physics by examining the propagation of shock waves for which the
radiation energy plays a significant role in the shock structure and evolution. Radiating shock waves represent a broad class
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Fig. 4. Curves of e (dashed line) and E (solid line) vs. dimensionless distance, at dimensionless times s ¼ 1;3;10;30, and 100 (curves shift upward as s
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Fig. 5. Marshak problem convergence: curves of u (solid lines) and v (dashed lines) at mesh resolutions of 128 (red), 256 (orange), 512 (blue), 1024 (green)
and 2048 (black) zones. Reference solution values are indicated by open circles and squares; the halving of relative error with each doubling of mesh size is
readily apparent. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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of phenomena figuring prominently in both astrophysical and terrestrial applications. The particular formulation of the prob-
lem we present is due to Lowrie and Edwards [46], who considered the propagation of planar, steady shock waves in the grey
nonequilibrium diffusion limit. Under the assumption of steady flow, [46] transform the coupled gas and radiation energy
equations into a set of nonlinear ODEs in dimensionless gas and radiation temperature variables, which must be integrated
numerically to achieve semi-analytic solutions. Nonetheless, their radiation diffusion model corresponds identically to that
implemented in Enzo in the grey LTE limit, and the unique structure of the post-shock material temperature profile for a
given Mach number makes this problem an excellent verification test for computer codes.

We have run the Mach-2 test case described in [46]. The computational domain has a length of 0.1 cm. The material has a
uniform initial density of 1:0 g cm�3, a constant specific heat of 2:218056
 1012 erg g�1 eV�1, and a uniform initial velocity
of 1:9475
 105 cm s�1. The material and radiation are assumed to be in thermal equilibrium at t = 0 at a temperature of
121.6 eV. Outflow and reflecting boundary conditions are imposed upon the left and right boundaries, respectively, resulting
in a shock wave that forms near the right boundary and propagates to the left. The total evolution time is 1.73325
nanoseconds.

Fig. 6 shows the result of a high-resolution simulation (4096 zones along the propagation axis). The curves represent the
dimensionless gas (solid curve) and radiation (dashed curve) temperatures, T and Tf . The circles and squares are taken from
exact solution data kindly provided by Lowrie for this parameter set. Both the gas and radiation have dimensionless far-field
temperatures of 1.0 in the pre-shock state. Examining the gas temperature curve, there are three features of particular inter-
est: the precursor, in which the material is preheated ahead of the shock front by the radiation wave which travels ahead of
the shock; the Zel’dovich spike, shown by the overshoot in temperature at the shock front, and the radiation relaxation region,
delineated by the decline in the material temperature to its eventual far-field postshock value. Letting Tp denote the max-
imum preshock value of the gas temperature in the precursor, and T1 the asymptotic postshock value, we note that the prop-
erty Tp < T1 identifies this calculation as an example of a subcritical radiating shock. In the limit of high Mach number, Tp can
become equal to (but never exceed) T1, such a shock wave is referred to as supercritical.

As vividly demonstrated by [46], the strength of the precursor, the height of the Zel’dovich spike, and the precise temper-
ature structure in the relaxtion region are extremely sensitive to the Mach number. While the case we have shown is sub-
critical, it lies near the limit for which a multidimensional code can reasonably capture this structure without resorting to
adaptive mesh refinement. The degree to which we resolve this structure as a function of resolution is shown in Fig. 7, in
which we magnify the region near the shock and show gas temperature curves for mesh sizes of 128, 256, 512, 1024,
2048 and 4096 zones. As shown in [46], raising the Mach number results in a dramatic increase in the height of the spike
and narrowing of the relaxation region; a proper representation of the postshock structure in a supercritical shock with Enzo
must await the implementation of adaptive mesh refinement in our radiation module.

Since this problem considers coupled radiation and hydrodynamics, we also examine how the adaptive time step selec-
tion strategy from Section 3.2.3 compares with the hydrodynamic CFL-limited time step. For this problem, the average radi-
ation time step ranged from 1.1e�5 down to 9.4e�6 for the coarsest (128-cell) to finest (4096-cell) grids, exhibiting a near-
constant time step selection that tracks evolution of the radiation field. For these same problems, the hydrodynamic CFL lim-
its on the time steps were 3.3e�4, 1.7e�4, 4.2e�5, 2.1e�5, 1.0e�5 and 5.0e�6. Hence, for most problems the stiff radiation
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Fig. 6. Subcritical radiating shock test using 4096 spatial zones. Gas and radiation temperatures are plotted in units of their preshock values: T is the solid
curve; Tr is the dashed curve. Semi-analytic values for T and Tr are indicated by circles and squares, respectively.
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time scale limits the overall time step size, until very fine grids where the mesh-dependent hydrodynamic CFL stability con-
dition becomes more restrictive.

4.5. Isothermal ionization of a static neutral hydrogen region

Our first test problem incorporating ionization chemistry is due to Iliev et al. [4]. This problem combines radiative transfer
and hydrogen ionization in a static astrophysical region. The physical situation of interest is the expansion of an ionized
hydrogen (HII) region in a uniform gas around a single monochromatic ionizing source emitting _Nc ¼ 5
 1048 photons
per second at the ionization frequency of hydrogen ðhm ¼ 13:6 eVÞ. We enforce a fixed gas temperature of T ¼ 104 K, and
a static hydrodynamic state (i.e. _qb ¼ _vb ¼ _e ¼ 0). In such a problem, the radiation source should rapidly ionize the surround-
ing hydrogen, and then should develop a spherically-propagating ionization front (I-front) that propages quickly at first,
slows, and then eventually stagnates at an equilibrium position referred to as the Strömgren radius, where ionization
ðHI! HIIÞ and recombinations ðHII! HIÞ balance. For this scenario, the analytically-provided I-front radius is given by
rI ¼ rS½1� expð�t=trecÞ	1=3
; where ð62Þ

rS ¼
3 _Nc

4paBn2
H

" #1=3

; ð63Þ
and the recombination time is given by trec ¼ ðaBnHÞ�1. Here, aB ¼ 2:59
 10�13 cm3 s�1 is the case B hydrogen recombination
coefficient.

We have the following problem parameters: the domain size is L ¼ 6:6 kpc in each direction; the initial gas number den-
sity is nH ¼ 10�3 cm�3; the initial radiation energy density is E ¼ 10�20 erg cm�3; the initial ionization fraction (HII/H) is
0.0012; the ionization source is located in the lower corner of the box (the (1,1,1) cell); we use reflecting boundary condi-
tions at the x-, y- and z-left boundaries, and outflow conditions at the corresponding right boundaries. For these parameters
the Strömgren radius rS ¼ 5:4 kpc, the recombination time trec � 3:86e15 s ð� 122:4 MyrÞ, and the total simulation time is
500 Myr ð� 4trecÞ. The implicit solver parameters used were a convergence norm of p ¼ 2, desired solution tolerance of
stol ¼ 0:01, time-step parameter of h ¼ 0:51, and nonlinear solver tolerance of e ¼ 10�7.

In Fig. 8 we plot the spherically-averaged I-front position and radius with respect to time, for various spatial mesh sizes.
The I-front position is computed from our results as the distance at which cells transition from below 50% to above 50% HII
fractional density. Assuming a spherical HII region, we compute this radius as rS ¼ ð8 3V

4p Þ
1=3, where V is the volume comprised

of all ionized cells (i.e. where nHII=nH P 0:5), and the additional factor of 8 arises due to the fact that our source is in the cor-
ner, so we must mirror V into the other 7 octants. We also plot the error in the computed I-front radius and velocity for vary-
ing mesh sizes. As can be clearly seen, the computed I-front position is highly accurate, even for coarse spatial grids, with the
corresponding accuracy increasing as the mesh is resolved.

In Fig. 9 we show cross-sections of the radiation energy density through the ionization source for 163 and 1283 grids. We
note that although the spherical front is jagged for coarse grids, as the mesh is refined we approach the physically-accurate
spherical profile. Moreover, this demonstrates that although the flux-limiter (12) is based on one-dimensional derivatives, it
does not result in anisotropic propagation biased along axial directions.
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4.6. Cosmological radiative ionization

We now perform the same test as above, but within a cosmologically-expanding universe. The problem is originally due
to Shapiro and Giroux [47], and combines cosmology, radiative transfer and chemical ionization. Here, the physics of interest
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is again the expansion of a HII region in uniform gas around a single monochromatic ðhm ¼ 13:6 eVÞ ionizing source. Again,
the ionization front should propagate quickly at first, approaching the Strömgren radius, but then should begin to lag behind
as cosmological expansion drives the Strömgren radius outward faster than the I-front can propagate. Due to the cosmolog-
ical expansion, the Strömgren radius changes in time, and is given by
Fig. 10.
solution
rSðtÞ ¼
3 _Nc

4paBnHðtÞ2

" #1=3

; ð64Þ
where although the Hydrogen number density nH is spatially static, it diminishes due to cosmological expansion by a factor
of a�3ðtÞ. Defining the parameter k ¼ aBnH;i=H0=ð1þ ziÞ, where the subscript i refers to the quantity at the initial redshift z0,
the analytical solution is given by
rIðtÞ ¼ rS;i ke�sðtÞ
Z aðtÞ

1
esð~aÞ½1� 2q0 þ 2q0ð1þ ziÞ=~a	�1=2d~a


 �1=3

; ð65Þ
where
sðaÞ ¼ k 6q2
0 ð1þ ziÞ2

h i�1
½FðaÞ � Fð1Þ	; ð66Þ

FðaÞ ¼ ½2� 4q0 � 2q0ð1þ ziÞ=a	½1� 2q0 þ 2q0ð1þ ziÞ=a	1=2
: ð67Þ
Here, q0 is the cosmological deceleration parameter and zi is the initial redshift. We perform four of the tests provided in the
original paper [47]: q0 of 0.5 and 0.05, and zi of 4 and 10. These correspond to the parameters:

� ðq0; ziÞ ¼ ð0:5;4Þ : Li � 80 kpc;H0 ¼ 0:5;Xm ¼ 1:0;XK ¼ 0;Xb ¼ 0:2
� ðq0; ziÞ ¼ ð0:05;4Þ : Li � 60 kpc;H0 ¼ 1;Xm ¼ 0:1;XK ¼ 0;Xb ¼ 0:1
� ðq0; ziÞ ¼ ð0:5;10Þ : Li � 36 kpc;H0 ¼ 0:5;Xm ¼ 1:0;XK ¼ 0;Xb ¼ 0:2
� ðq0; ziÞ ¼ ð0:05;10Þ : Li � 27 kpc;H0 ¼ 1;Xm ¼ 0:1;XK ¼ 0;Xb ¼ 0:1

where Li is the initial box size, H0 is the Hubble constant, Xm is the contribution of all non-relativistic matter to the gas
energy density at z ¼ 0, in units of the value required to close the universe, similarly XK and Xb are the contributions of
the cosmological constant and the baryonic matter to the energy density, respectively. These two types of cosmology result
in slightly different functions for the expansion coefficient a. For the case of q0 ¼ 0:05, this value comes from equations (13-
3) and (13-10) in [48]. For the case q0 ¼ 0:5, we use the standard formula a ¼ ð1þ zÞ�1. We begin all problems with an initial
radiation energy density of E ¼ 10�35 erg cm�3 and an initial ionization fraction (HII/H) of 0. The initial density is dependent
on q0, with qb;i ¼ 1:175
 10�28 g cm�3 for q0 ¼ 0:5, and qb;i ¼ 2:35
 10�28 g cm�3 for q0 ¼ 0:05. All simulations are run
from the initial redshift zi to z ¼ 0. All other problem parameters are identical to those in Section 4.5. All implicit solver
parameters are also identical to those in Section 4.5, but with desired solution accuracy stol ¼ 0:001 and inexactness param-
eter dk ¼ 10�13kf ðUkÞk.

In Fig. 10 we plot the scaled, spherically-averaged I-front position with respect to scaled redshift for each of the four tests
(with axes identical to [47], Fig. 1a), as well as the corresponding plots for just the zi ¼ 4 tests along with their analytical
solutions. These solutions all used a uniform 1283 spatial mesh. In Fig. 11 we plot the error in the computed I-front radius
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for varying mesh sizes for the two cases of q0 ¼ 0:5 and q0 ¼ 0:05 with zi ¼ 4. Again, the accuracy in the computed I-front
position improves as the mesh is resolved.

4.7. Hydrodynamic radiative ionization

We now incorporate hydrodynamic motion into the mixture of physical processes, and examine a problem due to Whalen
and Norman [7] that combines radiation, hydrodynamics and chemical ionization (but not cosmology). The problem is nearly
identical to that from Section 4.5, but now in a dynamic medium (varying temperature, density and velocity). Again, the
physics of interest is the expansion of a HII region in an initially uniform gas around a single ionizing source, though now
the source emits _Nc ¼ 5
 1048 photons per second with a frequency profile given by a TB ¼ 105 blackbody spectrum. Here,
the ionization front should propagate quickly at first, slowing until it reaches the Strömgren radius (63), at which point the I-
front transitions from radiation-driven (R-type) to dynamically-driven (D-type), and the high pressure of the ionized and
heated gas inside the HII region continues to push the I-front out past the Strömgren sphere. The expansion will finally stall
when a pressure equilibrium has been reached, at a radius rf ¼ ð2Ti=TeÞ2=3rS, where Ti is the temperature of the ionized gas
behind the front, and Te is the temperature of the ionized gas ahead of the front. Analytical models for the initial radiation-
only phase predict
rR
I ¼ rS 1� e�t=trec

� �1=3
; ð68Þ
where trec ¼ ½aBðTiÞnH	�1 is the recombination time (assumed constant in this phase). Analytical models for the subsequent
pressure-only phase predict
rp
I ¼ rS 1þ 7cs t

4rS


 �4=7

; ð69Þ
where cs ¼
ffiffiffiffiffiffiffiffiffiffiffi
pI=qI

p
is the sound speed in the ionized gas. We note that due to the dynamic nature of this problem, the true

solution should lie between the two curves (68) and (69), since both radiation and gas pressure play a role throughout the
dynamics, and neither Ti or Te are in fact constant behind or beyond the I-front.

We use the following problem parameters: the initial gas temperature is set to T ¼ 102 K; the initial radiation energy den-
sity is E0 ¼ 10�20 erg cm�3; the hydrogen is initially fully neutral (i.e. HII/H=0); the spatial domain is a 15 kpc box. We run for
a simulation time of 1 Gyr, which is not long enough to reach final the final equilibrium rf , but well past the transition from
R-type to D-type. The implicit solver parameters are identical to those in Section 4.5, but with a linear solver parameter
dk ¼ 10�9kf ðUkÞk.

Results from these tests are shown in Fig. 12, which plot the computed I-front position and neutral fractions for various
spatial meshes, along with the ‘‘error” in these quantities. Since this test problem does not have true analytical solutions, we
compute the ‘‘error” as the deviation in each solution from the most-refined 1283 mesh solution.

We also use this problem to examine the effect of our operator-split solution strategy on the temporal accuracy of the
solver. In Fig. 13 we plot the spherically-averaged temperature profile for a 1283 spatial grid at 175 Myr, and the associated
relative errors found through varying the time-step size. The error plot has been zoomed in around the heated region and
front. We note that although both PPM and the described implicit sub-solver are both up to second-order accurate, the split-
ting reduces the resulting accuracy to slightly better than first-order in time. We also note that the adaptive time-stepping
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strategy from Section 3.2.3 results in average time steps of 6.0e�4, 5.7e�4, 4.0e�4 and 2.7e�4 for the 163 through 1283

grids, respectively; whereas the hydrodynamic CFL-limited time steps for these same grids are 3.1e�3, 1.4e�3, 6.0e�4
and 2.8e�4. Hence the radiation and ionization dynamics drive the system for coarser meshes, while at finer mesh sizes
the hydrodynamic CFL condition begins to dominate.

4.8. Weak scaling

As described in our introduction and throughout the description of our numerical methods, a key goal in introducing a
fully-implicit solution mechanism for the stiff components in radiation, hydrodynamics and chemical ionization simulations
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Table 2
Cosmological weak scaling statistics.

Mesh Processors Time steps Run time Newton Its CG Its MG V-cycles

643 1 266 1694.38 322 914 2991
1283 8 265 2299.60 274 799 2575
2563 64 265 2456.58 268 787 2524
5123 512 264 2594.50 265 780 2510
10243 4096 264 2707.30 265 780 2510
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is the eventual scalability of such a solver to very large problem sizes. We therefore investigate the weak scaling of the im-
plicit solver on the cosmological radiative ionization problem from Section 4.6. For these tests, we emulate the setup from
the q0 ¼ 0:5 and zi ¼ 4 test, but here we place an ionizing source in the center of each processor’s subgrid. Moreover, for these
weak scaling tests we increase the domain size and mesh size proportionately to the number of processors, where each pro-
cessor owns a 643 grid and an initial subgrid box size of 80 kpc. We then run problems that scale up from 1 to 4096 proces-
sors, resulting in spatial grids ranging from 643 to 10243. Moreover, since we are investigating the scaling properties of the
numerical methods, we shorten the simulation time to evolve from zi ¼ 4 to z ¼ 3 in order to conserve on supercomputer
resources, while retaining the portion of the simulation with the most rapidly-evolving dynamics. All runs were performed
on the NSF Kraken machine (using 2 cores/node).

We show the runtimes associated with these tests in Fig. 14, and provide detailed statistics from each run in Table 2. We
note that on this architecture, the solver demonstrates near-perfect scalability, with modest increases in runtime for parallel
versus serial runs, and only marginal increases in solution time as the parallelism is increased. The reason for this is the near-
constant number of iterations required by the nonlinear Newton solver, the outer CG linear solver, and the inner multigrid
preconditioner. Therefore the increase in run time may be directly attributed to the ideal Oðlog pÞ increase in runtimes typ-
ical of multigrid methods, allowing near-optimal scalability to the limits of modern supercomputer resources.

5. Conclusions

We have described an implicit formulation for coupling cosmological radiation transport, chemical ionization and gas en-
ergy feedback within Enzo hydrodynamics simulations. The formulation is based on an operator-splitting between the non-
stiff hydrodynamics and stiff radiation–ionization-energy feedback physical processes, in which the stiff processes are solved
within a fully-implicit Newton–Schur–Krylov-Multigrid framework.

Through numerous tests, we have demonstrated that this solver is accurate and stable, allowing simulations of a wide
variety of physical environments from the laboratory scale to the astronomical and even cosmological scales. Moreover,
through the choice of numerical methods that form the implicit solver, it demonstrates ideal scalability for such coupled
physics simulations. In addition, this implicit formulation is highly extensible, and may easily be adjusted to allow new phys-
ical processes such as magnetic fields, multi-frequency radiation transfer, and additional chemical species. Finally, we are in
the process of extending this approach to allow for adaptive spatial discretizations (AMR), which should require adjustments
to only the inner multigrid linear solver.
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